Министерство РФ по атомной энергии

Концерн Росэнергоатом

Научно-исследовательский технологический институт им. А.П.Александрова НПКФ АКВИЛОН

Количественный химический анализ

Методика выполнения измерений содержания ионов лития, натрия и калия методом ионной хроматографии в пробах технологических водных сред первого контура АЭС с ВВЭР (Св-во № 01.14.274/2000 УНИИМ)

Государственный комитет РФ по стандартизации и метрологии

Уральский НИИ метрологии - Государственный научный метрологический центр

Свидетельство об аттестации МВИ № 01.14.274/2000 от 23.11.2000г.

Вводная часть

Настоящий документ устанавливает методику выполнения измерений содержаний ионов лития, натрия, калия методом ионной хроматографии в пробах технологических водных сред первого контура АЭС с ВВЭР в диапазоне концентраций от 0.025 до $1.0~\rm Mг/д M^3$ для лития, натрия и от 0.025 до $20.0~\rm Mr/д M^3$ для калия. В пересчете на общее содержание ионов щелочных металлов диапазон определяемых концентраций от $0.006~\rm do$ $0.7~\rm MMOль/~\rm д M^3$.

Объем пробы, необходимый для проведения анализа - не более 20 см³. Продолжительность одного определения без учета отбора проб, подготовки прибора и градуировки составляет 17 мин.

Проведению анализа не мешает присутствие борной кислоты до 16 г/ дм^3 и аммиака до 30 мг/ дм^3 .

1 Характеристики погрешности измерений

1.1 Границы δ_x относительной погрешности результатов измерений и ее составляющих, выполняемой по данной методике для указанного интервала концентраций катионов лития, натрия и калия, приведены в таблице 1.

Таблица 1

Катион К	еристика птической ляющей шности
Катион содержаний лития, интервала, в погрешности погрешность ическое кот	ляющей шности
натрия, калия интервала, в погрешности погре котором (среднеквадрат границы погрешность ическое кот	шности
котором (среднеквадрат (границы погрешность ическое кот	
погрешность ическое кот	
) (T) (T) (T)	интервала, в
	ором
mandAniew c	тической
	ляющей
	шности
$\Gamma = \Gamma =$	с заданной
1 1 0(0), /0 1 1	ностью),
	, %
От 0,02 до 0,1 вкл 18 9	4
Литий Св. 0,1 до 1,0 вкл 10 5	2
От 0,02 до 0,1 вкл 24 12	5
Натрий Св. 0,1 до 1,0 вкл 10 5	2
От 0,02 до 0,2 вкл 48 24	9
Калий Св. 0,2 до 10,0 вкл 26 13	5
Св.10,0 до 20,0 вкл 10 5	2

- 2 Средства измерения, вспомогательные устройства, материалы
- 12.1 Средства измерения.
- 2.1.1 Хроматограф ионный «СТАЙЕР» (сертификат об утверждении типа средства измерений N 2997 от 10.10.97, регистрационный N 16547-97.
- 2.1.2 Система сбора и обработки хроматографической информации "МультиХром", а/о АМПЕРСЕНД, г. Москва, (сертификат об утверждении типа средства измерений RU.C.004A N 5831 от 21.12.98, регистрационный N 13473-98).
- 2.1.3 Весы аналитические типа ВЛР-200, ГОСТ 24104-80.
- 2.1.4 Колбы мерные 2 класса точности, ГОСТ 1770-74, вместимостью 1000 см^3 3 шт.; 100 см^3 8 шт.
- 2.1.5 Пипетки автоматические переменного объема (пипетдозаторы), $(0.02-0.2 \text{ cm}^3) - 1 \text{ шт.}$, $(0.2-1.0 \text{ cm}^3) - 1 \text{ шт.}$
 - 2.2 Вспомогательное оборудование
 - 2.2.1 Устройство для микрофильтрации элюента;
 - 2.2.2 Насос водоструйный;
 - 2.2.3 Шприц медицинский полиэтиленовый вместимостью 2 cm^3 .
 - 2.2.4 Емкости из полиэтилена с крышками объемом 250 cm^3 -5 шт.
 - 2.2.5 Емкости из полиэтилена с крышками объемом 500 ${\rm cm}^3$ -5 шт.
 - 2.3 Реактивы и материалы.
 - 2.3.1 Литий хлористый, ТУ 6-09-3768, х.ч.
 - 2.3.2 Натрий хлористый, ГОСТ 4233, х.ч.
 - 2.3.3 Калий хлористый, ГОСТ 4234, х.ч.
 - 2.3.4 Кислота азотная, ТУ -609-2540-87, стандарт-титр (фиксанал)
 - 2.3.5 Вода деионизованная, ОСТ 95.976-83

- 2.3.6 Колонка разделительная "Аквилайн С1Р" 100•4мм;
- 2.3.7 Колонка защитная "Аквилайн С1Р" 8•3мм

Допускается использование средств измерений, реактивов и материалов, вспомогательного оборудования с характеристиками не хуже, чем у приведенных в 2.

3 Метод измерения

Измерение концентрации катионов лития, натрия, калия выполняют методом ионной хроматографии с кондуктометрическим детектированием.

В основу метода положено ионообменное разделение катионов на разделительной колонке с последующим детектированием катионов по электропроводности. Показания детектора при неизменных параметрах работы всей системы пропорциональны концентрации определяемого компонента.

4 Требования техники безопасности

При выполнении измерений концентрации катионов методом ионной хроматографии следует руководствоваться требованиями безопасности в соответствии с "Основными правилами безопасной работы в химических лабораториях" и правилами по технике безопасности, указанным в инструкции, прилагаемой к прибору.

5 Требования к квалификации оператора

К выполнению анализа допускаются лица, имеющие высшее или средне-техническое образование, опыт работы в химической лаборатории и освоившие работу на хроматографе в соответствии с техническим описанием и инструкцией по эксплуатации, прилагаемыми к прибору.

6 Условия измерений

При выполнении анализа соблюдают следующие условия:

температура окружающего воздуха — (20 ± 5) ^OC; относительная влажность воздуха — 30 - 80 %; напряжение переменного тока — (220 + 22) B;

содержание агрессивных веществ в воздухе не должно превышать санитарных норм;

механические воздействия, внешние электрические и магнитные поля, влияющие на работоспособность приборов, должны быть исключены.

6.2 Хроматографические условия анализа:

Температура детектора – $(35 + 1)^{\circ}$ С.

Состав и концентрация элюента: 0,004 моль/ дм³ азотной кислоты.

Скорость элюирования $(1,0 \pm 0,1)$ см³/мин

Объем пробы, вводимый в хроматограф – (400+2) мкл.

Ориентировочное время удерживания катионов:

натрий -9..3 мин литий -10,1 мин калий -12,8 мин аммоний -15,2 мин

Отклонение времени удерживания при конкретной реализации методики - до 20%.

7 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы.

- 7.1 Приготовление растворов элюента.
- 7.1.1 Концентрированный элюент раствор азотной кислоты с концентрацией 0,1 моль/дм 3 готовят из стандарттитра. Для этого в колбу вместимостью $1000~{\rm cm}^3$ количественно переносят содержимое ампулы стандарттитра и доводят объем до метки деионизованной водой.

- 7.1.2 Элюент раствор азотной кислоты с концентрацией 0,004 моль/ дм³ готовят из концентрированного элюента. Для этого в мерную колбу вместимостью 1000 см³ помещают 40см³ концентрированного элюента и доводят объем до метки деионизованной водой. Перед использованием элюент фильтруют через фильтр с диаметром пор не более 5 мкм и дегазируют с применением водоструйного насоса в течение 10 мин.
 - 7.2 Приготовление растворов для градуировки.
 - 7.2.1 Приготовление раствора А.

Навеску 2,5420 г натрия хлористого, предварительно высушенного в течении 1-2 часов при 105-110 $^{\circ}$ С (до постоянной массы), растворить в небольшом количестве деионизованной воды в мерной колбе вместимостью 1 дм³, довести до метки той же водой, перемешать. Хранить в полиэтиленовой посуде.

Полученный раствор A содержит 1 г/дм 3 ионов натрия.

7.2.2 Приготовление раствора В.

Навеску 6,1077 г лития хлористого, предварительно высушенного в течении 1-2 часов при $105-110^{\circ}\mathrm{C}$ (до постоянной массы), растворить в небольшом количестве деионизованной воды в мерной колбе вместимостью $1~\mathrm{дm}^3$, довести до метки той же водой, перемешать. Хранить в полиэтиленовой посуде.

Полученный раствор В содержит 1 г/дм³ ионов лития.

7.2.3 Приготовление раствора С.

Навеску 1,9068 г калия хлористого, предварительно высушенного в течении 1-2 часов при $105\text{-}110^{\circ}\mathrm{C}$ (до постоянной массы), растворить в небольшом количестве деионизованной воды в мерной колбе вместимостью $1~\mathrm{дm}^3$, довести до метки той же водой, перемешать. Хранить в полиэтиленовой посуде.

Полученный раствор С содержит 1 г/дм³ ионов калия.

7.2.4 Приготовление раствора D.

В мерную колбу вместимостью 100 см³ поместить по 1,0 см³ стандартных растворов А, В и С и довести объем раствора в колбе до метки деионизованной водой, перемешать. Готовый

раствор перелить в полиэтиленовую посуду. Срок хранения раствора – один месяц.

Полученный раствор D содержит по 10 мг/дм^3 ионов натрия, лития и калия.

7.3 Приготовление градуировочных растворов

Градуировочные растворы № 1-6 готовят последовательным разбавлением растворов С и D непосредственно перед применением.

7.3.1 Для приготовления градуировочного раствора № 1 в мерную колбу 100 см^3 вносят 0.2 см^3 раствора D и объем доводят до метки деионизованной водой. Раствор № 1 содержит катионы в следующих концентрациях:

```
натрий -0.02 \text{ мг/ дм}^3; литий -0.02 \text{ мг/ дм}^3; калий -0.02 \text{ мг/ дм}^3.
```

7.3.2 Для приготовления градуировочного раствора № 2 в мерную колбу $100~{\rm cm}^3$ вносят 1,0 см³ раствора D и объем доводят до метки деионизованной водой. Раствор № 2 содержит катионы в следующих концентрациях:

```
натрий -0.10 \text{ мг/ дм}^3; литий -0.10 \text{ мг/ дм}^3; калий -0.10 \text{ мг/ дм}^3.
```

7.3.3 Для приготовления градуировочного раствора № 3 в мерную колбу $100~{\rm cm}^3$ вносят 5,0 см³ раствора D и объем доводят до метки деионизованной водой. Раствор № 3 содержит катионы в следующих концентрациях:

```
натрий -0.50 \text{ мг/ дм}^3; литий -0.50 \text{ мг/ дм}^3; калий -0.50 \text{ мг/ дм}^3.
```

7.3.4 Для приготовления градуировочного раствора № 4 в мерную колбу $100~{\rm cm}^3$ вносят $10.0~{\rm cm}^3$ раствора D и объем доводят до метки деионизованной водой. Раствор № 4 содержит катионы в следующих концентрациях:

```
натрий — 1 \text{ мг/ дм}^3; литий — 1 \text{ мг/ дм}^3; калий — 1 \text{ мг/ дм}^3.
```

7.3.5 Для приготовления градуировочного раствора № 5 в мерную колбу 100 см³ вносят 1,0 см³ раствора С и объем доводят до метки деионизованной водой. Раствор № 5 содержит катионы калия с концентрацией 10,0 мг/ дм³.

7.3.6 Для приготовления градуировочного раствора № 6 в мерную колбу $100~{\rm cm}^3$ вносят $2,0~{\rm cm}^3$ раствора С и объем доводят до метки деионизованной водой. Раствор № 6 содержит катионы калия с концентрацией $20,0~{\rm mr/}$ дм 3 .

Допускается приготовление градуировочных растворов из растворов ГСО ионов лития, калия, натрия.

7.4 Регенерация разделительной колонки.

При длительной работе разделительной колонки ее характеристики могут ухудшаться из-за сорбции примесных соединений. Для восстановления свойств разделительную колонку регенерируют. Для этого к выходному штуцеру насоса подсоединяют разделительную колонку. Входной штуцер насоса погружают в регенерирующий раствор для разделительной колонки — 0,1н раствор азотной кислоты. Включают насос и прокачивают раствор через разделительную колонку в течении 30 мин со скоростью потока 1 мл/мин. Затем колонка перемывается на элюент до установления динамического равновесия (стабилизация базовой линии).

Регенерацию разделительной колонки рекомендуется проводить после проведения 150 - 200 анализов.

7.5 Подготовка хроматографа.

Установку, включение и подготовку хроматографа к работе осуществляют в соответствии с инструкцией по эксплуатации, прилагаемой к прибору. Устанавливают на кран прямого ввода петлю объемом 400 мкл. Установку, включение и подготовку программного обеспечения системы сбора и обработки информации "МультиХром" осуществляют в соответствии с инструкцией по эксплуатации и руководством пользователя.

8 Выполнение измерений

При выполнении измерений концентрации катионов выполняют следующие операции.

- 8.1 Установить на насосе скорость элюирования 1 см³/мин. Включить насос и промыть гидравлические линии хроматографа элюентом до стабилизации базовой линии по показаниям кондуктометрического детектора.
 - 8.2 Повернуть кран ввода пробы в положение «НАНЕСЕНИЕ».
- 8.3 Промыть шприц для ввода пробы в хроматограф 3-х кратным объемом градуировочного раствора 1. Ввести в петлю хроматографа 1,5 2,0 см³ градуировочного раствора № 1.
- 8.4 Повернуть кран ввода пробы в положение «ВВОД» и одновременно запустить программу сбора и обработки хроматографической информации.
- 8.5 По окончании хроматограммы обработать ее в соответствии с руководством пользователя программным обеспечением.
- 8.6 Повторить процедуры 8.2-8.5 последовательно для остальных (не менее двух) используемых градуировочных растворов.
- 8.7. Провести процедуру градуировки в соответствии с руководством пользователя программным обеспечением.
- 8.8 Повторить процедуры 8.2 8.5 для анализируемых проб, проводя по два параллельных определения.
- 8.9 После обработки хроматограмм в соответствии с руководством пользователя вывести на дисплей или принтер результаты анализа.
 - 9 Вычисление результатов анализа.
 - 9.1 Результаты анализов вычисляют по формуле:

$$C_{\pi(H.K)} = (X_1 + X_2)/2$$
, (1)

где С $_{_{\Pi(H,K)}}$ - концентрация лития (натрия, калия), $_{\text{MГ}/\Pi\text{M}}^3$:

- X_1, X_2 концентрации определяемого катиона, найденные для двух параллельных измерений, мг/дм 3 .
- 9.2 Результат анализа с доверительными границами погрешности записывается следующим образом:

$$C_{\pi(H,K)} \pm \Delta_{\pi(H,K)}, \qquad M\Gamma/ \, дм^3, \qquad (2)$$

где $\Delta_{\,_{\Pi(H,K)}}$ — граница погрешности измерений — рассчитывается по формуле:

$$\Delta_{\pi(H,K)} = \delta_{x} (\%) *C_{\pi(H,K)} /100$$
 (3)

где δ_x (%) — граница относительной погрешности измерений для соответствующего диапазона концентраций лития (натрия, калия).

Значения δ_{x} (%) приведены в таблице 1.

9.3 Суммарную концентрацию ионов щелочных металлов S вычисляют по формуле:

$$S = C_{\pi} / 7 + C_{H} / 23 + C_{K} / 39$$
, MG-9KB/ дm^{3} (4)

9.4 Результат с доверительными границами погрешности записывается следующим образом:

$$S \pm \Delta$$
, мг-экв/ дм³ (5)

где
$$\Delta = \sqrt{\Delta^2_{\text{I}} + \Delta^2_{\text{H}} + \Delta^2_{\text{K}}}$$
 (6)

10 Контроль точности результатов измерений

10.1 Контроль сходимости проводят при анализе каждой пробы по размаху результатов параллельных определений после выполнения п.8.8.

Решение об удовлетворительной сходимости принимают при выполнении условия

$$\mid X_1 - X_2 \mid \leq d, \tag{7}$$

где X_1 , X_2 - значения результатов параллельных определений, d – норматив контроля сходимости.

Значения норматива контроля сходимости приведены в таблице 2.

Таблица 2.

Катион	Диапазон измеряемых содержаний лития, натрия, калия мг/дм ³	Норматив контроля сходимости d, %
Литий	От 0,02 до 0,1 вкл	20
	Св. 0,1 до 1,0 вкл	7
Натрий	От 0,02 до 0,1 вкл	16
	Св. 0,1 до 1,0 вкл	9
Калий	От 0,02 до 0,2 вкл	30
	Св. 0,2 до 10,0 вкл	16
	Св.10,0 до 20,0 вкл	10

При выполнении условия (7) результаты параллельных определений считают удовлетворительными. Если условие (7) не выполняется, повторяют анализ пробы, делая два параллельных определения. При повторном превышении показателя d выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

10.2 Оперативный контроль погрешности МВИ осуществляют с использованием метода добавок. Образцами для контроля являются рабочие пробы и пробы с добавкой. Объем контрольной пробы должен быть равен удвоенному объему, необходимому для проведения измерений по методике.

Контрольную пробу делят на две равные части. Часть пробы анализируют в точном соответствии с прописью методики. В другую часть пробы вводят добавку определяемого компонента (величина добавки С должна составлять 50-100% от содержания компонента в исходной пробе) и анализируют пробу с добавкой в точном соответствии с прописью методики.

Все результаты получают в одних и тех же условиях с использованием одного и того же набора мерной посуды и одинаковых партий реактивов.

Результат контроля признают удовлетворительным, если:

$$\left| C_{2} - C_{1} - C \right| \leq K_{\pi}, \tag{8}$$

где C_1 - массовая концентрация компонента в исходной пробе, мг/дм 3 ;

 C_2 - массовая концентрация компонента в пробе с добавкой, мг/дм 3 ;

C – действительное содержание элемента в добавке к пробе (AC), мг/дм 3 ;

 $K_{\mbox{\tiny Λ}}$ – норматив контроля точности.

$$K_{\rm A} = \sqrt{(\Delta_{\rm c1})^2 + (\Delta_{\rm c2})^2}, \quad (M\Gamma/{\rm ZM}^3);$$
 (9)

 Δ_{c1} , Δ_{c2} (мг/дм 3) - значения характеристики погрешности определения компонента (без учета знака) в контрольной пробе без добавки и в пробе с добавкой в соответствующем диапазоне измеряемых содержаний.

Перевод значений из относительных единиц (%) в абсолютные (мг/дм^3) осуществляют по формулам:

 $\Delta c_1 = 0.01* \ \delta c_1 * C_1$ (C1-содержание определяемого компонента в пробе);

 $\Delta c_2 = 0.01* \delta c_2 * C_2$ (С2-содержание определяемого компонента в пробе с добавкой);

Значения δc_1 (δc_2) приведены в соответствующем диапазоне измеряемых концентраций таблицы 1 (см. δ_x).

Оперативный контроль погрешности МВИ с использованием метода добавок обязательно проводится при смене партий реактивов и материалов, при замене средств измерения. Если условия проведения измерений неизменны, то оперативный контроль погрешности МВИ с использованием метода добавок проводится не реже 1 раза в квартал.

При превышении значений норматива оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

11 Оформление результатов измерений

Полученные результаты анализа регистрируются и протоколах, в которых указывают:

обозначение настоящей методики;

порядковый номер пробы;

дату отбора пробы и анализа;

результат измерения с указанием погрешности;

отклонения при проведении определения, если таковые имелись, и факторы, отрицательно влияющие на их результаты; фамилию исполнителя.